Redox Regulation of Insulin Degradation by Insulin-Degrading Enzyme

نویسندگان

  • Crystal M. Cordes
  • Robert G. Bennett
  • Gerri L. Siford
  • Frederick G. Hamel
چکیده

Insulin-degrading enzyme (IDE) is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was studied using either partially purified cytosolic enzyme from male Sprague-Dawley rats, or purified rat recombinant enzyme. We confirm that nitric oxide inhibits the degrading activity of IDE, and that it affects proteasome activity through this interaction with IDE, but does not affect the proteasome directly. Oxidized glutathione inhibits IDE through glutathionylation, which was reversible by dithiothreitol but not by ascorbic acid. Reduced glutathione had no effect on IDE, but reacted with partially degraded insulin to disrupt its disulfide bonds and accelerate its breakdown to trichloroacetic acid soluble fragments. Our results demonstrate the sensitivity of insulin degradation by IDE to the redox environment and suggest another mechanism by which the cell's oxidation state may contribute to the development of, and the link between, type 2 diabetes and Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation.

Insulin-degrading enzyme (IDE) is responsible for the degradation of a number of hormones and peptides, including insulin and amyloid beta (Abeta). Genetic studies have linked IDE to both type 2 diabetes and Alzheimer's disease. Despite its potential importance in these diseases, relatively little is known about the factors that regulate the activity and function of IDE. Protein S-nitrosylation...

متن کامل

Insulin is degraded extracellularly in wounds by insulin-degrading enzyme (EC 3.4.24.56 ).

The exact mechanism by which insulin reverses impaired wound healing is unknown. Previous investigators have shown that insulin is degraded in experimental wounds, suggesting that the action of insulin may be locally modified. The following study corroborates these findings and identifies the major proteinase responsible for insulin degradation in wound fluid (WF). Adult male Fisher rats were w...

متن کامل

Effect of Passage Number and Culture Time on the Expression and Activity of Insulin-Degrading Enzyme in Caco-2 Cells

Background: Insulin-degrading enzyme (IDE) is a conserved zinc metallopeptidase. Here, we have evaluated the effect of passage number and culture time on IDE expression and activity in colorectal adenocarcinoma cell line (Caco-2). Methods: Caco-2 cells were cultured with different passage ranges of 5-15, 25-35, 52-63 for 48, 72, and 120 hours. Subsequently, IDE expression and enzyme activity we...

متن کامل

An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures.

Amylin (islet amyloid polypeptide) is the chief component of the islet amyloid found in type 2 diabetes, and amylin fibril precursors may be cytotoxic to pancreatic beta-cells. Little is known about the prevention of amylin aggregation. We investigated the role of insulin-degrading enzyme (IDE) in amylin degradation, amyloid deposition, and cytotoxicity in RIN-m5F insulinoma cells. Human (125)I...

متن کامل

Mutations in a zinc-binding domain of human insulin-degrading enzyme eliminate catalytic activity but not insulin binding.

Insulin-degrading enzyme is a nonlysosomal metalloprotease that initiates degradation of internalized insulin in some cells. We previously identified a potential catalytic site containing an inversion of the Zn(2+)-binding domain of the thermolysin family (Kuo, W.-L., Gehm, B. D., and Rosner, M. R. (1991) Mol. Endocrinol. 4, 1580-1591). The role of this site in catalysis was examined by mutatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011